Point-Separable Classes of Simple Computable Planar Curves
نویسندگان
چکیده
In mathematics curves are typically defined as the images of continuous real functions (parametrizations) defined on a closed interval. They can also be defined as connected one-dimensional compact subsets of points. For simple curves of finite lengths, parametrizations can be further required to be injective or even length-normalized. All of these four approaches to curves are classically equivalent. In this paper we investigate four different versions of computable curves based on these four approaches. It turns out that they are all different, and hence, we get four different classes of computable curves. More interestingly, these four classes are even point-separable in the sense that the sets of points covered by computable curves of different versions are also different. However, if we consider only computable curves of computable lengths, then all four versions of computable curves become equivalent. This shows that the definition of computable curves is robust, at least for those of computable lengths. In addition, we show that the class of computable curves of computable lengths is point-separable from the other four classes of
منابع مشابه
One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کاملOn the Computability of Rectifiable Simple Curve
In mathematics curves are defined as the images of continuous real functions defined on closed intervals and these continuous functions are called parameterizations of the corresponding curves. If only simple curves of finite lengths are considered, then parameterizations can be restricted to the injective continuous functions or even to the continuous length-normalized parameterizations. In ad...
متن کاملNonrigid Point Correspondence Recovery for Planar Curves Using Fourier Decomposition
A novel method of point correspondence recovery between planar curves is presented in this paper where motion between the curves is nonrigid. Fourier transformation is used to decompose planar curves into a set of ellipses, each at a different frequency level. The point correspondences between two planar curves is based on the correspondences between two ellipses in the same frequency level. At...
متن کاملPairing Computation on Elliptic Curves with Efficiently Computable Endomorphism and Small Embedding Degree
Scott uses an efficiently computable isomorphism in order to optimize pairing computation on a particular class of curves with embedding degree 2. He points out that pairing implementation becomes thus faster on these curves than on their supersingular equivalent, originally recommended by Boneh and Franklin for Identity Based Encryption. We extend Scott’s method to other classes of curves with...
متن کاملGeometric Embedding of Path and Cycle Graphs in Pseudo-convex Polygons
Given a graph G with n vertices and a set S of n points in the plane, a point-set embedding of G on S is a planar drawing such that each vertex of G is mapped to a distinct point of S. A straight-line point-set embedding is a point-set embedding with no edge bends or curves. The point-set embeddability problem is NP-complete, even when G is 2-connected and 2-outerplanar. It has been solved poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Logical Methods in Computer Science
دوره 8 شماره
صفحات -
تاریخ انتشار 2012